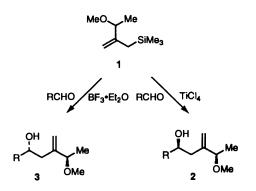
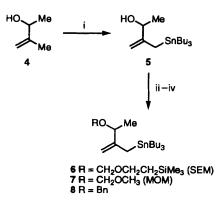
1469


1,4-Asymmetric induction in reactions between [2-(1-alkoxyalkyl)propenyl](tributyl)stannanes and aldehydes promoted by tin(IV) halides

Michelangelo Gruttadauria and Eric J. Thomas*

The Department of Chemistry, The Victoria University of Manchester, Manchester M13 9PL, UK


Transmetallation of [2-(1-alkoxyalkyl)propenyl](tributyl)stannanes with tin(IV) bromide or chloride generates an allyltin trihalide which reacts with aldehydes with useful 1,4-asymmetric induction.

Alk-2-enyl(tributyl)stannanes with heteroatom substituents at the 4-, 5- and 6-positions react with aldehydes with useful levels of remote asymmetric induction.¹ 1,4-Asymmetric induction has been observed in reactions of [2-(1-methoxyalkyl)propen-yl](trimethyl)silane 1 with aldehydes which give either the 1,4-

syn- or 1,4-*anti*-alcohol **2** or **3** as the major product depending on the Lewis acid used.² We now describe reactions of [2-(1alkoxyalkyl)propenyl](tributyl)stannanes with aldehydes which proceed with stereoselectivity in favour of 1,4-*anti*isomers together with aspects of the chemistry of the products.

The [2-(1-hydroxyethyl)prop-2-enyl](tributyl)stannane **5** was prepared by lithiation of 3-methylidenebutan-2-ol **4** and quenching with tributyltin chloride,³ and was alkylated to give the (2-trimethylsilylethoxy)methyl ether **6**, the methoxymethyl ether **7** and the benzyl ether **8** (Scheme 1).

Scheme 1 Reagents: i, 2 BuLi, Bu₃SnCl (46%); ii, SEMCl, $Pr_{2}^{i}NEt$ (89%); iii, MOMCl, $Pr_{2}^{i}NEt$ (76%); iv, NaH, Bu₄NI, BnBr

Reactions with aldehydes were carried out by adding a solution of the tin(v) halide to the allylstannane at -78 °C, followed, after 5–10 min, by the aldehyde. With benzaldehyde

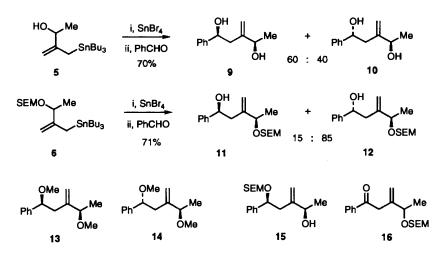
and tin(iv) bromide, the 2-(hydroxyethyl)propenylstannane **5** gave the 1,4-*syn* and 1,4-*anti* products **9** and **10** with modest stereoselectivity, *ca.* 60:40 in favour of the *syn*-isomer **9**. The reactions with the 2-(alkoxyethyl)propenylstannanes were more stereoselective, and the stereoselectivity was reversed. For example, the (2-trimethylsilylethoxy)methoxy ether **6** gave the 1,4-*syn* and 1,4-*anti* products **11** and **12** in a ratio of 15:85.

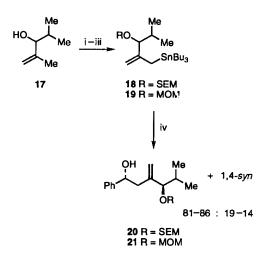
The configurations of the products 9^+ and 10 from the reaction of the hydroxystannane 5 with benzaldehyde were established by correlation with an authentic sample of the synmethoxyalcohol 2.² Methylation of this alcohol (NaH, MeI, 85%) gave the 1,4-syn-dimethyl ether 13 which was identical to the dimethyl ether obtained from the major diol 9 (NaH, MeI, 93%) and distinctly different from the dimethyl ether 14 obtained by methylation of the minor diol 10. Treatment of the 1,4-syn-diol 9 with (2-trimethylsilylethoxy)methyl chloride gave the *minor* product from the reaction of benzaldehyde and the 2-(alkoxyethyl)propenylstannane 6 together with the regioisomeric ether 15, so showing that the major product from this reaction had been the anti-isomer 12. This major product 12 was converted into the minor product 11, identical to that prepared from the 1,4-syn-diol 9, by using diethyl azodicarboxylate, triphenylphosphine and o-nitrobenzoic acid⁴ followed by saponification of the inverted o-nitrobenzoate. Finally, oxidation of both of the 1,4-syn- and anti-hydroxy ethers 11 and 12 gave the same ketone 16.

The results of reactions of the stannanes **6–8** and benzaldehyde, acrolein and 2-methylpropanal, promoted by both tin(tv) bromide and tin(tv) chloride are summarised in Table 1. To a first approximation, the stereoselectivities of the reactions of the 2-(alkoxyalkyl)stannanes are independent of the nature of the alkoxy group, the aldehyde, and whether tin(tv) bromide or chloride is used. In all cases the 1,4-*anti* product is preferred, stereoselectivity *ca.* 85:15. Similar results were obtained with the 3-alkoxy-4-methyl-2-(tributylstannylmethyl)pent-1-enes **18** and **19**, prepared by stannylation of 2,4-dimethylpent-1-en-3-ol **17**,⁵ which on transmetallation with tin(tv) bromide reacted with benzaldehyde to give the 1,4-*anti* products **20** and **21**, stereoselectivities *ca.* 85:15 (Scheme 2).

The stereoselectivity of these reactions of the 2-(alkoxyalkyl)stannanes 6–8, 18 and 19 with aldehydes is consistent with transmetallation with the tin(iv) halide to generate an allyltin trihalide 22 in which the electron-deficient tin atom is coordinated to the oxygen substituent. Reaction with the aldehyde on the less hindered face of the allyltin trihalide *via* the sixmembered, chair-like, cyclic transition state 23 would then lead to the observed 1,4-*anti*-stereoselectivity. Why the reversed

⁺ The structure of the *syn*-1,4-diol **9** has been confirmed by X-ray diffraction. Details will be published in a full paper.

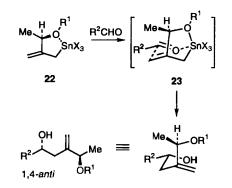



Table 1

$$R^{1}O$$
 Me i, SnX_{4} $R^{2}CHO$ R^{2} Me H^{2} Me H^{2} Me H^{2} Me R^{2} Me R^{2

 Stannane R ¹	Lewis acid SnX4	Aldehyde R ²	Yield ^{<i>a</i>} (%)	1,4-syn: $1,4$ -anti ^b
Н	SnBr₄	Ph	70	60 : 40 ^c
Н	SnCl ₄	Ph	55	67:33°
SEM	SnBr ₄	Ph	71	15:85
SEM	SnCl ₄	Ph	79	17:83
MOM	SnBr ₄	Ph	70	14:86
MOM	SnCl ₄	Ph	82	20:80
Bn	SnBr ₄	Ph	62	15:85
SEM	SnBr ₄	H ₂ C=CH	77	23:77
SEM	SnBr	Me ₂ CH	75	13:87

^a Isolated yield. ^b By ¹H NMR of product mixture. ^c By GLC.


I

Scheme 2 Reagents: i, 2 BuLi, Bu₃SnCl (40%); ii, SEMCl, $Pr_{2}^{i}NEt$ (70%); iii, MOMCl, $Pr_{2}^{i}NEt$ (65%); iv, SnBr₄, PhCHO (**20**, 69%, 1,4-anti:1,4-syn = 86:14; **21**, 60%, 1,4-anti:1,4-syn = 81:19)

stereoselectivity is observed for the 2-(hydroalkyl)stannane 5 is not clear, perhaps a boat transition state is involved.

Finally, the *anti*-product **24** prepared using the 2-(alkoxyethyl)stannane **6** and 2-methylpropanal was ozonolysed to give the ketone **25** which was reduced stereoselectively to give either the 1,3-*syn*-diol **26** (NaBH₄, Et₂BOMe)⁶ or the 1,3-*anti*-diol **27**



 $[Me_4NBH(OAc)_3]^7$ to demonstrate the use of this chemistry for the stereoselective synthesis of 1,3,4-triol derivatives.

Experimental

(1RS,4RS)-3-Methylidene-1-phenyl-4-(2-trimethylsilylethoxymethoxy)pentan-1-ol 12

A cooled solution of tin(iv) chloride (312 mg, 1.2 mmol) in dichloromethane (1.2 cm³) was added dropwise to a stirred solution of 2-[1-(2-trimethylsilylethoxymethoxy)ethyl]prop-2-enyl(tributyl)stannane 6 (505 mg, 1 mmol) in dichloromethane (10 cm³) at -78 °C under argon. After 5 min, a cooled solution of benzaldehyde (106 mg, 1 mmol) in dichloromethane (0.3 cm³)

was added to it and the mixture stirred for 1 h at -78 °C. Saturated aqueous NaHCO₃ (10 cm³) was added, and the mixture allowed to warm to room temperature, before being partitioned between dichloromethane and water. The organic extract was washed with brine, dried (MgSO₄), and concentrated under reduced pressure. Chromatography of the residue eluting with light petroleum–ethyl acetate, gave the *title compound* **12** (254 mg, 79%) containing *ca.* 17% (¹H NMR)

of its epimer 11 (Found: $M^+ + H$, 323.2051. $C_{18}H_{31}O_3Si$ requires *M*, 323.2043); v_{max}/cm^{-1} (liq. film) 3443, 1647, 1494, 1453, 1375, 1249, 1105, 1024, 919, 861, 836, 756 and 700; $\delta_H 0.06$ [9 H, s, Si(CH₃)₃], 0.97 [2 H, m, CH₂Si(CH₃)₃], 1.36 (3 H, d, *J* 6.6, 5-H₃), 2.47 (1 H, dd, *J* 15, 3, 2-H), 2.64 (1 H, dd, *J* 15, 4, 2-H'), 3.00 (1 H, br s, OH), 3.7 [2 H, m, OCH₂CH₂Si(CH₃)₃], 4.27 (1 H, q, *J* 6.6, 4-H), 4.66 (2 H, m, OCH₂O), 4.94 (1 H, dd, *J* 7, 4, 1-H), 5.19 and 5.04 (each 1 H, m, vinylic H) and 7.40 (5 H, m, ArH); m/z (CI) 323 (M⁺ + 1, 2%) and 247 (40).

Acknowledgements

We thank the EU for support (to M. G.) under the Human Capital and Mobility Scheme and M. Kemp for helpful preliminary observations.

References

- 1 E. J. Thomas, *ChemTracts Organic Chemistry*, 1994, 207; E. J. Thomas in *Stereocontrolled Organic Synthesis*, ed. B. M. Trost, Blackwell, 1994, pp. 235–258.
- 2 Y. Nishigaichi, A. Takuwa and A. Jodai, *Tetrahedron Lett.*, 1991, **32**, 2383.
- 3 B. M. Trost and S. A. King, J. Am. Chem. Soc., 1990, 112, 408.
- 4 S. F. Martin and J. A. Dodge, Tetrahedron Lett., 1991, 32, 3017.
- 5 D. J. Faulkner and M. R. Petersen, J. Am. Chem. Soc., 1973, 95, 553.
- 6 K. Chen, G. E. Hardtmann, K. Prasad and O. Repic, *Tetrahedron Lett.*, 1987, 28, 155.
- 7 D. A. Evans, K. T. Chapman and E. M. Carreira, J. Am. Chem. Soc., 1988, 110, 3560.

Paper 5/01984B Received 29th March 1995 Accepted 7th April 1995